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 1. MOTIVATION FOR MOLECULAR STORAGE 
    AND COMPUTING: Density, New Computing

TALK OUTLINE

2. MOLECULAR STORAGE: Via Mixtures 

 3. MOLECULAR COMPUTING: Molecular 
     Perceptrons, Chemical Steganography
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MY FIRST ACQUAINTANCE WITH COMPUTERS

Fujitsu’s FACOM 655 Line Printer (1977)

● Satisfied the “need for computers 
with greater compactness”

● Printed 340 lines/min and 62 
character types



MY FIRST ACQUAINTANCE WITH COMPUTERS

Fujitsu’s FACOM 655 Line Printer (1977)

Totally Awesome 
Hiding Place!



MY FIRST ACQUAINTANCE WITH COMPUTERS

Fujitsu’s FACOM 655 Line Printer (1977) 10.5-in. Magnetic Tapes, IBM Mainframes (1980s)



BUT, THEY COULD BE EVEN OLDER...

UNIVAC I, US Census Bureau (1952)

Grandpa Vick
Mathematician at 

Sperry-Rand, UNIVAC 
Programmer

Correctly forecasted the 
1952 election!



GROWTH OF COMP. POWER

L. Grossman, Time Magazine (2011).
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THE END OF MOORE’S LAW
● Moore’s Law: the number 

of transistors per chip will 
double every 18 months

● This law has held true 
since enunciated in 1965

● HOWEVER, WE MAY BE 
NEARING THE DEATH of 
MOORE’S LAW:
○ Transistors Too Small!
○ Expensive!
○ Massive power demands!

10 nm(!) process 
(2016)
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● We produce 2.5 exabytes 
(1018 bytes!) of data per 
day 

● Our data production is 
growing at a rate of 40% 
per year 

● In 2013, the size of the 
total digital universe was 
4.4 zettabytes (1021 bytes). 
In 2020, it is estimated to 
become 44 zettabytes. 

THE PROBLEM: BIG DATA
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● Storage capacity is growing far, far 
slower than the digital universe. 

● In 2013, average storage capacity 
could hold 33% of the digital 
universe. In 2020, it will be able to 
hold less than 15% of the digital 
universe. 

● Storage capacity doesn’t even 
address challenges with I/O speeds 
or the ability to randomly access 
data. 

MBs TBs
Recode, 

http://www.eetimes.com/author.asp?section_id=36&doc_id=1330462.

THE BIGGER PROBLEM: WHERE TO STORE?



● It will be difficult to 
miniaturize transistors 
below 5 nm
○ Quantum mechanical 

tunneling intercedes

● BUT, MOLECULES ARE 
NATURALLY OF THESE 
DIMENSIONS!

● Why not compute using 
molecules? 

DNA

1.09 Å

THE DAWN OF MOLECULAR COMPUTING

Anthracene

Nitrogen
3.4
nm
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ADVANTAGES of 
MOLECULES

● Found Everywhere

● Low Power Demands

● Billions of Billions of 
Billions of Them in Small 
Volumes

● Embarrassingly Parallel

● We Know How To 
Manipulate with 
Chemistry!

1 Beaker of Water May Be Able to Store 200 
Empire State Buildings Worth of Data!

THE DAWN OF MOLECULAR COMPUTING
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● Biomolecules, such as 
DNA, store large 
amounts of information 
(1.5 GB in human 
genome!) in a small 
space
 

● Millions/Billions of years 
of evolution have led to 
Low-Error DNA 
Processing Techniques 
(“Bio Software”) 

DNA AS THE ULTIMATE STORAGE MEDIUM

18



Useful for Solving Problems That Can Be Constructed In Terms of 
Path Minimization (SAT Problems, Traveling Salesman Problem)

The Traveling Salesman Problem

DNA COMPUTING

Adelman, Science (1994); Scientific American (1998); Lipton, Science (1995).
19



THE CHALLENGE

Can We Develop Ways of Storing 
Information Within and Computing With 

Small Molecules?
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THE CHALLENGE

Can We Develop Ways of Storing 
Information Within and Computing With 

Small Molecules?
● What are the tradeoffs that accompany small 

unordered mixtures vs. larger ordered 
polymers? 

● What pressures does storage place on synthesis 
and detection? 

● What are fundamentally molecular 
computations? 23



MOLECULAR 
STORAGE
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READING AND WRITING DATA IN 
CHEMICAL MIXTURES

Writing chemical data means 
creating 1 out of 𝛀=2bits 

possible chemical states 
(mixtures or sets of mixtures).

Reading a chemical dataset 
corresponds to figuring out 

which 1 out of the 𝛀 states it is.

Rosenstein et al., Trans. NanoBioSciences (2020).
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Goals
OUR APPROACH

Synthesis:
We will encode information in 
collections of small molecules.

Detection:
FT-ICR Mass Spectrometry

Analysis: 
Custom CAD software to optimize synthesis, select 
optimal chemical encodings of datasets, and automate 
statistical data recovery from multi-dimensional datasets.

Data:
Images, audio, and weather series.

• To store abstract digital data 
by taking advantage of 
small molecule chemical 
diversity

• To develop leading-edge 
synthesis and analysis 
techniques that can scale to 
billions of molecules/day

• To establish scalable 
strategies for solution-phase 
information processing 
using small-molecule 
reactions

Computation: 
Solution-phase classifiers using 
reactions targeted to R-groups.
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MULTICOMPONENT REACTIONS
Ugi 4-Component ReactionWe will encode our data in 

molecules produced via Ugi 
reactions, which are:
● High-yielding
● Combinatorial
● Soluble in reaction solvents 

(acetonitrile, methanol; water)
● Yield Stable, Nonpolar 

Products
● Readily characterized by NMR 

and mass spectrometry
● Amenable to tandem reactions
● Like peptides!

Combinatorial: 
If 10 R1s, R2s, R3s, 

and R4s, 
10,000 Different 

Compounds 
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Alphanumeric:

Binary: 

Molecular:  

Rhode Island ACS

Let There Be Two 
Groups Per Site: 

R1: X (0), Y (1)
R2: A (0), B (1)
R3: C (0), D (1)
R4: E (0), F (1)

X
B

E
1

2

3

4
X

X

X

B

0101 0010 0110 1000 0110 1111 0110 0100 
0110 0101 0010 0000 0100 1001 0111 0011 
0110 1100 0110 0001 0110 1110 0110 0100 

0010 0000 0100 0001 0100 0011 0101 0011

A
C

A

DC

D

E

E

E

HOW WOULD YOU WRITE SOMETHING? 
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DATA ENCODING AND TRADEOFFS

Many Smaller Mixtures
D separate mixtures with different 

combinations of M unique molecules: 

e.g., D = 25,000
100MB / 25,000 = 4KB

M = 32,000 unique molecules

>30,000 Molecules still pushes MS bounds
and analysis speed

One Mixture
M = 800,000,000 
unique molecules
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COMBINATORIAL LIBRARY SYNTHESIS  
Example: 1 amine, 2 aldehydes, 17 carboxylic acids, 5 isocyanides   

(1x2x17x5 = 170 Ugi compounds)

→   Translate into automation protocol

[ … ] 30



COMBINATORIAL LIBRARY SYNTHESIS  
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Labcyte Echo 550

● 384- and 1536-well plates
● Robotic any-to-any well transfers
● No pipette tips, contactless
● 2.5 nanoliter droplets
● Transfers 200 droplets per second
● Capable of >100,000 transfers per day

ACOUSTIC LIQUID HANDLING

32



FT-ICR MASS SPECTROMETRY
Bruker Daltonics SolariX XR 7T FT-ICR Will rely on a Fourier-Transform Ion 

Cyclotron Resonance (FT-ICR) 
Mass Spectrometer for Detection:
● Determines Mass Based Upon 

Lorentz’s Law: F = qv x B
● Mass Resolution: 106

● Mass Range: 100-10000 Da
● Loading: 106 to 107 Charges
● Minimum Number of Ions for 

Detection: ~100
●  ~104 to 105 compounds per 

loading

https://www.bruker.com/products/mass-spectrometry-and-separations/ftms/solarix/technical-details.html.
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Prepare 
Reagents

Robotic 
Library 
Synthesis

Automated 
Mixture Creation

Acoustic 
MALDI Spotting

MALDI
FT-ICR MS

Data Analysis
CAD 
for Library
Synthesis

CAD for Data Mapping 
and Spotting

Input Data

Select 
Reagents

Output DataManual
Chemistry Software

Automated Experiments

OVERALL EXPERIMENTAL WORKFLOW
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MASS SPEC OF INDIVIDUAL COMPOUNDS
Bruker SolariX 
FT-ICR MS

35



MIXTURE MASS SPECTRA

32-Ugi data:   11001000 00010100 10000000 00000000

There are only 0-32 library compounds, but 
there are thousands of MS features.
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For each compound, we 
see multiple MS peaks:
● 13C isotopes
● M+H, M+Na, M+K, and 

others….
● Clusters of 2M, 3M, 4M
● Matrix peaks
● Instrument harmonics

These peaks are generally consistent for one sample and one 
measurement condition, but their amplitudes are difficult to predict 
ahead of time => Learn Spectra, Don’t Trace Peaks!

MULTI-PEAK STATISTICAL ANALYSIS

E. Kennedy et al., PLoS One (2019).
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We can rank peaks by discrimination power, and train a 
classifier using the top N peaks - improves accuracy, generality. 

MULTI-PEAK STATISTICAL ANALYSIS

Identify Peaks with Greatest 
Detection Accuracy

E. Kennedy et al., PLoS One (2019).
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Use Peaks Above 
Threshold

We can rank peaks by discrimination power, and train a 
classifier using the top N peaks - improves accuracy, generality. 

MULTI-PEAK STATISTICAL ANALYSIS

E. Kennedy et al., PLoS One, 2019.

Identify Peaks with Greatest 
Detection Accuracy 39



Sparse data-to-mixture mapping
● 16 bits per mixture
● 512 molecules present, but only use 32

HARNESSING SPARSITY
Mapping each data block to one mixture out of many, 
many more increases accuracy. 

 Arcadia et al., Nature Comm. (2020).

23,336 pixels

99.89% 
accuracy
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READ/WRITE OF DIGITAL IMAGES

(Including Mapping 
Sparsity, Coding, Training 

Regressors, etc.)

 Arcadia et al., Nature Comm. (2020).
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MOLECULAR DATA STORAGE GALLERY

6,142 bits

17,424 bits

8,904 bits

97,969 bits 125,630 
raw bits

257,544 
raw bits

768 bits

 Arcadia et al., Nature Comm. (2020).
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COMPARISON WITH OTHER TECHNIQUES

 Arcadia et al., Nature Comm. (2020).
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Raw Chemical Information Storage
(without redundancy / error correction)

Read/Write Speeds

MOLECULAR STORAGE CAPACITY GROWTH
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THE LARGER THEORETICAL PICTURE
Storing information in disordered mixtures of small molecules is 
but one option out of a spectrum of potential storage techniques that 
exploit polymer length and monomer diversity in different ways. 

Rosenstein et al., Trans. NanoBioSciences (2020).



COMPUTATION
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PERCEPTRONS  

● Goal: To devise a molecular perceptron that can serve as the 
backbone for signal processing (e.g., filtering) and pattern recognition 
(e.g., image classification)

Perceptron Classifying Domesticated 
Animals

Multiply 
Accumulate

Nonlinear
Thresholding

C. Arcadia et al., ICRC (2018).
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PERCEPTRONS  
Perceptron Classifying Domesticated 

Animals

Multiply 
Accumulate

Nonlinear
Thresholding

Chemical Multiply-Accumulate Operation

C. Arcadia et al., ICRC (2018).
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Here we take advantage of co-existing 
chemicals for parallelized image 
classification:

● Each pixel location maps to 1 well
● 1 image maps to 1 chemical
● Multiple datasets are overlaid 

(chemically mixed)

PARALLEL MOLECULAR COMPUTING

C. Arcadia et al., ICRC (2018).
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MOLECULAR PERCEPTRON CONCEPT

Data
M binary images

Write Data
Realize images by 
dispensing solutions with 
(1) or without (0) molecule 
M in each well

Query Chemical Data
Check for a particular image 
by transferring a volume 
according to the weight

Read Out
Determine the values of 
the weighted sums by 
measuring 
concentrations via liquid 
chromatography

Threshold
Classify by applying 
perceptron 
inequality

Chemical Data
M spatially 
overlaid images

C. Arcadia et al., ICRC (2018).
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CHEMICAL MNIST DATA CLASSIFICATION

Used for classification here, but can easily also be applied to 
signal processing, linear algebra

96% Rate of Correct Classification

16 sets of 3 vectors, each 16 bits 
= 48 total vectors

C. Arcadia et al., ICRC (2018).
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● Partition Image Into 9 Parts, Each Represented By a Unique Phenol
● All Partitions Are Superimposed → Enables Parallel Processing
● 27 Bits Per Well! → 9x Improvement over Earlier Perceptron Work

Well 
Plate

● Can Exploit Molecular Parallelism to Partition Images and 
Process at Once

Quantized 
Image After 
Partitioning 

and Padding
Andrew Alliance 
Liquid Handler

REPRESENTING IMAGES IN CHEMISTRY
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FOUNDATIONS OF IMAGE PROCESSING
● Convolutions Rest at the 

Heart of Most Image 
Processing Techniques
 

○ Weighted Sum of a 
Kernel Across an Image

● Requires Addition and 
Multiplication
○ Multiplication Via 

Volumetric or 
Reaction-Based 
Weighting 

1 0 1

0 1 0

1 0 1

Kernel

53



IMAGE PROCESSING: BLURRING EXAMPLE
Image Blurring Example Apply a Kernel Over Sliding 

Windows of Pixels to Blur

Molecular Implementation 
Using Phenols and HPLC

input image

Output image

HPLC
54



MULTIPLICATION VIA VOLUMETRIC 
WEIGHTING

Kernel : 
Gaussian Blur

0.0673 0.1248 0.0673

0.1248 0.2314 0.1248

0.0673 0.1248 0.0673

Process

input image output image

Weights = Volumetric 
Fractions

Of Input Image
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MULTIPLICATION VIA REACTIONS
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Input Image Output Image

Kernel

3 different 
concentrations 

represent 3 
different 

values of the 
Gaussian 

kernel

Look for 
[acetates] 
in GC-MS

57

MULTIPLICATION VIA REACTIONS



FILTERING IMAGES
Quantized Image Before Error 

Correction
Quantized Image After Error 

Correction

The Structural Similarity Index (SSIM) compares experimental and theoretical 
blurred images (0 is least similar and 1 is most similar). 

SSIM = 0.3654 SSIM = 0.6103
=> With appropriate EC, can 
chemically process images. 

58



PATH TO CHEMICAL, MULTILAYER 
NETWORKS

Developing a multilayer neural 
network requires:  
● Activation - a nonlinear function 

that suppresses some 
differences and amplifies others

● Properties that can be transferred 
from layer to layer (can’t be 
abstract)

● The ability to multiply and 
accumulate over many inputs

Linear Function 
Less Powerful for Classification

ReLU Sigmoid
More powerful for classification 59



ACTIVATION VIA AUTOCATALYSIS

S. Semenov et al., JACS (2018); C. Arcadia et al., In Prep (2020).

The Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction

A Way To 
Measure 

Time!
60



The Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction

A Way To 
Measure 

Time!

Minimally 
absorbs in the 
400 nm range 

→ blue

ACTIVATION VIA AUTOCATALYSIS

S. Semenov et al., JACS (2018); C. Arcadia et al., In Prep (2020).
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WINNER-TAKE-ALL-NETWORK FLOW

Labcyte Liquid 
Handler

UV/Vis 
Spectrometer

S. Semenov et al., JACS (2018); C. Arcadia et al., In Prep (2020).
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Time [hr]

1-starfish, 2-kangaroo, 3-llama, 4-dragonfly, 5-ibis

1-starfish

2-kangaroo

3-llama

4-dragonfly

5-ibis
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OUTLOOK
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SUMMARY/OPPORTUNITIES
● Developed new ways to store information 

in molecules which rely on mass - 
extremely dense, discreet, and stable

● Opens up possibilities for extremely 
parallel computation at different scalings 
than conventional computation; this was 
exploited in our molecular neural 
networks

● Ultimately, molecules can be used for 
more complex computing tasks than 
classification - but how? 
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MOTIVATION
Thus far We Have Guessed “Functional” Reactions

Key Goal: 
Let’s Not Guess! 

Let’s Develop a Systematic Way of Identifying “Functional” 
Reactions We Can Realize in the Lab

Volumetric and 
Autocatalytic Perceptrons Chemical Multiplication

Identifying Logic Gates 
in Metabolism
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